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I. INTRODUCTION 

Many works [ 11 -[S ] have been devoted to the characteriza- 
tion of the frequency stability of ultrastable frequency sources 
and have shown that the frequency noise of a generator can be 
easily characterized by means of the “two-sample variance” 
(21 of frequency fluctuations, which is also known as the 
“Allan variance” [ 2] in the special case where the dead time 
between samples is zero. 

An algorithm for frequency measurements has been devel- 
oped by J. J. Snyder [6 1, [ 71. It increases the resolution of 
frequency meters, in the presence of white phase noise. It has 
been considered in detail by D. W. Allan and J. A. Barnes [8]. 
They have defined a function called the “modified Allan 
variance” and they have analyzed its properties for the com- 
monly encountered components of phase or frequency fluctu- 
ations [ 3 1. For that purpose, the authors of [ 8 ] have expressed 
the modified Allan variance in terms of the autocorrelation of 
the phase fluctuations. For each noise component, they have 
computed the modified Allan variance and deduced an empiri- 
cal expression for the ratio between the modified Allan variance 
and the AlIan variance. 

In this paper, we show that the analytical expression of this 
ratio can be obtained directly, even for the noise components 
for which the autocorrelation of phase functions is not defined 
from the mathematical point of view. We give the theoretical 
expressions and compare them with those published in [ 8 ] . 

The precision of the estimate of the modified Allan variance 
is discussed and results related to white phase and white fre- 
quency noises are presented. 

II. BACKGROUND AND DEFINITIONS 
In the time domain, the characterization of frequency stability 

is currently achieved by means of the two-sample variance 
[ 21 (a’ (2, T, 7)) of fractional frequency fluctuations. It is 
define as rr 

(a$(2, T, 7)) = + ((yk+r - jg*) (1) 

where the quantity rk is the average value of the fractional fre- 
quency fluctuations y(f) over the time interval (tk, rk + r) 
such that 

, I-rk+T 

J y 0) dt. 
tk 

(2) 

In (2), tk represents the moment at which the kth observation 
time interval starts. We have 

lk =rO +kT, T>T (3) 

where te is an arbitrary time origin, k is a positive integer, and 
T is the time interval between the beginning of two successive 
observations. 

In all the following, we assume that the dead time between 
samples is zero. We then have 

T = r. (4) 
In this special case, the two-sample variance is well known as 
the Allan variance u$ (T) 

u;(7) = (0;(2,7,7)). (5) 

The relation between the AlIan variance and y(t) can be ex- 
pressed as 

(I- 

tk+27 

I 

t&+7 2 

u;(7)= $ Y 0) dt - )> rtt)dt . (6) 
tk*l rk 

Equation (6) shows that u:(7) is proportional to the true vari- 
ance of the output of a linear filter with input signal y(r) and 
impulse response hi (t) in Fig. 1. 

b h,(t) 

Fig. 1. Variations with time of the linear filter impulse response which 
represents the signal processing for the Allan variance calculation. 

1 

- 

Fig. 2. Illustration of the algorithm considered for the measurement of 
periodic signal frequency. 

The fractional frequency fluctuations y(t) are actually welI 
described by a conventional model which consists of a set of 
five independent noise processes [21. Taking into account the 
finite bandwidth of the processed signal and assuming a single 
pole filter, the one-sided power spectral density S, ( f) of y (t) 
can be written as 

S,(f) = ha 
fQ 

1+ f2 
0 

(7) 

C 

where coefficients ha do not depend on f. The integer (Y equals 
2, 1, 0, - 1, and -2. f, is the 3-dB bandwidth of the hardware 
filter. 

III. THE MODIFIED ALLAN VARIANCE 
The main property of the algorithm developed by J. J. 

Snyder is to increase the precision on the measure of periodic 
signal frequency, in presence of white phase noise (71. It con- 
sists in dividing a time interval 7 into R cycles of clock period 
TO such as 

7=nro. (8) 

Therefore, from a given observation time interval of duration 
27, n overlapping time intervals of duration r can be obtained, 
as depicted in Fig. 2. Another property of this algorithm is to 
reduce the total observation time by a factor n/2. 

Following this way, Allan and Barnes have introduced the 
“modified AlIan variance” [ 8 I such as 

It can be easily seen from (9) that the calculation of each 
statistical sample involved in the definition of Mod U:(T) 
requires a signal observation of duration 37. 

The impulse response h,(t) of the equivalent linear filter 
consists in finite sum of n shifted impulse responses hi(r). 
We have 

hi(t) = f g hI(C - iTo). (10) 
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TABLE I 
ANALYTICAL EXPRESSION FOR THE MODIFIED ALLAN VARIANCE WITHIN 

CONDITION 27rj,ro >> 1 

NOISE TYPE a Mod +) 

WHITE P M 2 3 h2 fc 

8 "7 r2 

FLICKER P M 1 hl 
4nZnfZz3nen(2nfcr) + kfl(n-k) 4Q5-7 - 1) -en (+ 

I 

n-1 

I 

n2 
2 

- 1) 

WHITE F M 0 
h 
&“2+1 

2: -7 

2h-lf.n2 4n2 
-3n*l n-l 

(k l h)Cn(k +2n)-(k - 2n)Pn(2n -k) 
1 

FLICKER F H -1 

,z 
1 

2 l &y x kfI(“-k) X3 I[ 
+; (k +n)(k -2n)Cn(k +n) +; 

- (.-,k)t.ik-;,]I] 

RANDOM WALK F M - 2 

In order to illustrate ( lo), variations with time of the shifted 
functions hi(r - ire) and of the impulse response h,(t) are 
represented in Fig. 3(a) and (b), respectively, for n = 10. 

For n = 1, the Allan variance and the modified one are equal. 
We have 

Mod u;(r) = a;(r). 

One can express (9) in terms of the spectral density S,,(f). 
We have 

Modo;(r)=--& 7 S,(f) sin4 (TfnTo) df 

n-1 
+ 2 c (n - k) 7 S,(f 1 cos wmo) 

k=1 

1. (12) 

It should be noted that the integrals involved in (12) are con- 
vergent for each noise component. The analytical expression 
for the modified Allan variance can therefore be deduced 
directly from this equation. 

In the following, it is assumed that the condition 2nf, 70 >> 1 
is fulfilled. This means that the hardware bandwidth of the 
measurement system must be much larger than the reference 
clock frequency. 

We have calculated the modified Allan variance for each 
noise component. Results are reported in Table I. It appears 
that the analytical expression for Mod u:(r) is relatively simple 
except for flicker phase and flicker frequency noises where it 
is given as a finite sum of functions depending on n. In order 
to compare the Allan variance with the modified one, we 

-1. 
T  

* 

@I 
Fig. 3. (a) The impulse response h,(r), associated with the modified 

Allan variance calculation, represented as a sum of n shifted impulse 
response hi(t). It is assumed n = 10. (b) Variations with time of 
the impulse response h,(t), in the special case where n = 10. 

* See Appendix Note # 35 
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TABLE II 
ASALYTC~L EXPRESSIONS AND ASYUP~OTICAL VALUS FOR R(n) 

(Results Are Valid within Condition Zlrf,ro >> I) 

a R(n) lim, _ I R(n) 

2 1 
n 

0 

1 i2 n+ 

[ 

1 n-1 2 
x 0 

3 2ll( 27fc"To) 
Z (n-k) 4 en ({ 

k=l 1 k 
- :) - in (% - 1) 

k 
II 

2 
0 y 0.5 

- ! 

1 4nZ-3n+1 

I 

n-1 

7 2 
+$JX kflb-Ux $ 

1 [ 
(k +Zn)Ln(k +Zn)-(k -2n)m(Zn - k)l 

+; (k+n)(k-Zn)en(k+n)+ ;(k-n)(k +Zn)en,k-n’+3k*tnk-k[(n+Zk)f.n(k+ 

- (n -2k)W k - ;’ 
0.787 

- 2 0.825 

consider the ratio R (n) defined in [ 8 ] as 
R (n) = Mod +~)/a; (7). (13) 

4Rtnl 

The analytical expressions for R(n), deduced from Table I, 
are reported in Table II. One can see that R(n) does not 
depend on the product fcro, except for flicker phase noise 
modulation. The asymptotic values of R(n) are also listed in 
Table II. 

Fig. 4 depicts the variations of R(n) with n. It shows that, 
for large values of n, white phase and flicker phase noise 
modulations have different dependences. As outlined in [8 1, 
this gives a means to easily distinguish these two noise pro- 
cesses, in the time domain. For large n, and for a = 0, - 1, - 2, 
R (n) remains a constant. Consequently the Allan variance can 
be deduced from the modified one, for these noise processes. 

A comparison with results of [8] shows a good agreement 
for a = 2, 0 and - 2. But, for Q = 1 and - 1, our expressions for 
the modified Allan variance and ratio R (n) disagree, especially 
for flicker phase noise modulation. This discrepancy might 
be due to the fact that in [ 81, Mod U;(T) is expressed in terms 
of the autocorrelation function of phase fluctuations which 
is not defined for a = 1. 

a.2 
\ 

n 
0 

1 10 lo2 

IV. UNCERTAINTY ON THE ESTIMATE OF THE 
MODIFIED ALLAN VARIANCE 

Fig. 4. Variations with n of the ratio R(n), for fractional frequency 
fluctuations with power law spectrum S,(f) = h, . (l/l + (f/f&2)fQ, 
within condition 2nf,ro >> 1. (*For Q = +l, R(n) is a function off, 
and rg. The reported variations are for 2nfcro = 104.) 

Equation (9) shows that the definition of the modified Allan 
variance theoretically implies an infinite set of time intervals. 

Practically, one can only estimate this quantity from a finite 
set of m successive cycles similar to the one depicted in 
Fig. 3(b). 

Let Mod G;(T) be the estimated modified Allan variance 
(EMAV) such as 

Mod 6; (7) (14) 
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* 

where 

I 
zo+(f+zn)To+(k-l)3nf0 

Ai,k = Y 0) dt 

ro + (i+n)so + (k - 1)3mo 

-I 

rO+(l+n)sg+(k-l)mq 

y 0) dt. (15) 

* See Appendix Note # 35 TN-262 
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The EMAV is a random function of m. Its calculation requires ante has been studied and numerical values have been reported 
an observation time of duration 3m7. for white phase and white frequency noise modulations. 

We consider e, the fractional deviation of the EMAV relative In conclusion, the modified Allan variance appears to be well 
to the modified Allan variance defined as follows: suited for removing the ambiguity between white and flicker 

phase noise modulation. Nevertheless, the calculation of the 
E’ 

Mod G;(r) - Mod $,(r) 

Mod u;(r) * (16) modified Allan variance requires signal processing which is 
complicated, compared to the Allan variance. In the presence 

The standard deviation o(e) of e defines the relative uncertainty 
of white or flicker phase noise, the Allan variance cannot be 

on the measurement of the modified Allan variance, due to the 
easily deduced from the modified Allan variance. Further- 

finite number of averaging cycles. We have 
more, for a given source exhibiting different noise components, 
the determination of the Allan variance from the modified 
one is difficult to perform. For most of time-domain measure- 

U(E) = Mod i2 (7) icr’ IMod ~;(d)1’2 (17) ments, the use of the Allan variance is preferred. 
Y 

where o2 [Mod s;(r)] denotes the true variance of the EMAV ACKNOWLEDGMENT 

such as The authors would like to express their thanks to Dr. Claude 

u2 IMod 3(7)1 =([Mod G;(r)12>- [Mod r$,(r)]‘. (18) 
Audoin for constructive discussions and valuable comments on 
the manuscript. 

We assume that the fluctuations y(r) are normally distributed 
[ IO]. One can therefore express ([Mod $; (7) I ’ ) as REFERENCES 

m’([Mod G;(T)]‘) 
I1 1 D. W. Allan. “Statistics of atomic frequency standards,” Prof. . - 

IEEE, vat 54, pp. 221-230, Feb. 1966. 
=(m2 + 2m) [Mod u$(r)12 I21 J. A. Barnes et 01.. “Characterization of frequency stability,” 

L ’ IEEE Z&u. Instn&. Meas., VOL IM-20, pp. 105-120, May 1971. 

+4my(m-p) 2”5(n-i)I,+do 1 1 
2 [3] L. S. Cutler and C. L. Searle, “Some aspects of the theory and (1% measurement of frequency fluctuations in frequency standards,” 

p-1 t-1 ROC IEEE, VOL 54, pp. 136-154, Feb. 1966. 
[4] J. Rutman, “Characterization of phase and frequency instabilities 

where I,, are integrals which depend on n and on the noise pr& in precision frequency sources: Fifteen years of progress,” hoc. 
cess. We have IEEE, vat 66, pp. 1048-1075, Sept 1978. 

I51 P. Lesane and C. Audoin. “Effect of dead-time on the estimation 
* ’ of the -two-sample variance,” IEEE iPans. In~m. Meas., VOL 

8n2~2n21 = 
- S,(f) 

?I - cos 6nnpfro IM-28, pp. 6-10, Mar. 1979. 
f2 [6] J. J. Snyder, “Algorithm for fast digital analysis of interference 

fringes,“AppL Opt., vat 19, pp. 1223-1225, Apr. 1980. 
X { 6 cos 2nfro i - 4 cos 2nfro(i + n) [71 -* “An ultra-high resolution frequency meter,” in Proc. 35th 

. An& Symp. Fre&ncy Conrrol (Fort Monmouth, NJ), 1981, 
- 4 COs 27rf70(i - n) + cos 27rfro(i + 2n) DD. 464-469. 

+ cos 2nfTo(i - 2n)) df. (20) 
I 8] b: W. Allan and J. A. Barnes, “A modified Allan varhnce with 

increased oscillator characterization ability,” in ROC. 35th Annu. 

For each noise component, the expression for o(e) can be Symp. Frequency Control (Fort Monmourh, NJ), 1981, pp. 470- 
474. 

deduced from the calculation of integrals involved in (20). “Processus de diffusion et stationnarite,” CR. 
These expressions are generally lengthy and complicated except 

I 91 B. Picinbono, 
Acad. Sci., VOL 271, pp. 661-664, Oct. 1970. 

for white phase and white frequency noise modulations, where 
_ - . . . 

[lo] P. Lesage and C. Audoin, “Characterization of trequency staou- 
integrals I,, equal zero. We have limited the present analysis ity: Uncertainty due to the finite number of measurements,” 
to these two noise components. We get for U(E) IEEE 7hw. Instrum. Meus., VOL IM-22, pp. 157-161, June 1973. 

u(r) = 1 
m’ 

for Q = 2 and 0. (21) 

We now compare (2 1) with previously published results related 
to the estimate of the AUan variance [S]. For a given time 
observation of duration 3mr, it can be easily deduced from 
[ 5 ] that the relative uncertainty on the estimate of the Allan 
variance varies asymptotically as 1.14 m-Ii2 and 1.0 me112 for 
a = 2 and 0, respectively. For these two noise components, the 
uncertainty on the EMAV is larger than the uncertainty on the 
estimated Allan variance, but of the same order of magnitude. 

V. CONCLUSION 
We have calculated the analytical expression for the modi- 

fied Allan variance for each component of the model usually 
considered to characterize random frequency fluctuations in 
precision oscillators. These expressions have been compared 
with previously published results and the link between the 
Allan variance and the modified Ahan variance has been 
specified. 

The uncertainty on the estimate of the modified AIlan vari- 
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